Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Genes (Basel) ; 14(10)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895307

RESUMO

The FOXP subfamily includes four different transcription factors: FOXP1, FOXP2, FOXP3, and FOXP4, all with important roles in regulating gene expression from early development through adulthood. Haploinsufficiency of FOXP1, due to deleterious variants (point mutations, copy number variants) disrupting the gene, leads to an emerging disorder known as "FOXP1 syndrome", mainly characterized by intellectual disability, language impairment, dysmorphic features, and multiple congenital abnormalities with or without autistic features in some affected individuals (MIM 613670). Here we describe a 10-year-old female patient, born to unrelated parents, showing hypotonia, intellectual disability, and severe language delay. Targeted resequencing analysis allowed us to identify a heterozygous de novo FOXP1 variant c.1030C>T, p.(Gln344Ter) classified as likely pathogenetic according to the American College of Medical Genetics and Genomics guidelines. To the best of our knowledge, our patient is the first to date to report carrying this stop mutation, which is, for this reason, useful for broadening the molecular spectrum of FOXP1 clinically relevant variants. In addition, our results highlight the utility of next-generation sequencing in establishing an etiological basis for heterogeneous conditions such as neurodevelopmental disorders and providing additional insight into the phenotypic features of FOXP1-related syndrome.


Assuntos
Deficiência Intelectual , Feminino , Humanos , Criança , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Fala , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição , Síndrome , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
2.
J Exp Clin Cancer Res ; 42(1): 244, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735434

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most malignant among gliomas with an inevitable lethal outcome. The elucidation of the physiology and regulation of this tumor is mandatory to unravel novel target and effective therapeutics. Emerging concepts show that the minor subset of glioblastoma stem cells (GSCs) accounts for tumorigenicity, representing the true target for innovative therapies in GBM. METHODS: Here, we isolated and established functionally stable and steadily expanding GSCs lines from a large cohort of GBM patients. The molecular, functional and antigenic landscape of GBM tissues and their derivative GSCs was highlited in a side-by-side comprehensive genomic and transcriptomic characterization by ANOVA and Fisher's exact tests. GSCs' physio-pathological hallmarks were delineated by comparing over time in vitro and in vivo their expansion, self-renewal and tumorigenic ability with hierarchical linear models for repeated measurements and Kaplan-Meier method. Candidate biomarkers performance in discriminating GBM patients' classification emerged by classification tree and patients' survival analysis. RESULTS: Here, distinct biomarker signatures together with aberrant functional programs were shown to stratify GBM patients as well as their sibling GSCs population into TCGA clusters. Of importance, GSCs cells were demonstrated to fully resemble over time the molecular features of their patient of origin. Furthermore, we pointed out the existence of distinct GSCs subsets within GBM classification, inherently endowed with different self-renewal and tumorigenic potential. Particularly, classical GSCs were identified by more undifferentiated biological hallmarks, enhanced expansion and clonal capacity as compared to the more mature, relatively slow-propagating mesenchymal and proneural cells, likely endowed with a higher potential for infiltration either ex vivo or in vivo. Importantly, the combination of DCX and EGFR markers, selectively enriched among GSCs pools, almost exactly predicted GBM patients' clusters together with their survival and drug response. CONCLUSIONS: In this study we report that an inherent enrichment of distinct GSCs pools underpin the functional inter-cluster variances displayed by GBM patients. We uncover two selectively represented novel functional biomarkers capable of discriminating GBM patients' stratification, survival and drug response, setting the stage for the determination of patient-tailored diagnostic and prognostic strategies and, mostly, for the design of appropriate, patient-selective treatment protocols.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Células-Tronco , Biomarcadores , Carcinogênese
3.
Front Cell Dev Biol ; 11: 1237629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635873

RESUMO

Imprinting disorders are congenital diseases caused by dysregulation of genomic imprinting, affecting growth, neurocognitive development, metabolism and cancer predisposition. Overlapping clinical features are often observed among this group of diseases. In rare cases, two fully expressed imprinting disorders may coexist in the same patient. A dozen cases of this type have been reported so far. Most of them are represented by individuals affected by Beckwith-Wiedemann spectrum (BWSp) and Transient Neonatal Diabetes Mellitus (TNDM) or BWSp and Pseudo-hypoparathyroidism type 1B (PHP1B). All these patients displayed Multilocus imprinting disturbances (MLID). Here, we report the first case of co-occurrence of BWS and PHP1B in the same individual in absence of MLID. Genome-wide methylation and SNP-array analyses demonstrated loss of methylation of the KCNQ1OT1:TSS-DMR on chromosome 11p15.5 as molecular cause of BWSp, and upd(20)pat as cause of PHP1B. The absence of MLID and the heterodisomy of chromosome 20 suggests that BWSp and PHP1B arose through distinct and independent mechanism in our patient. However, we cannot exclude that the rare combination of the epigenetic defect on chromosome 11 and the UPD on chromosome 20 may originate from a common so far undetermined predisposing molecular lesion. A better comprehension of the molecular mechanisms underlying the co-occurrence of two imprinting disorders will improve genetic counselling and estimate of familial recurrence risk of these rare cases. Furthermore, our study also supports the importance of multilocus molecular testing for revealing MLID as well as complex cases of imprinting disorders.

4.
Front Neurol ; 14: 1202971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448753

RESUMO

Purpose: To evaluate the electro-clinical features in association with laboratory and instrumental correlates of neurodegeneration to detect the progression of Lafora disease (LD). Methods: We investigated the electro-clinical longitudinal data and CSF Aß42, p-tau181 and t-tauAg, amyloid, and 18F-FDG PET of five unrelated LD families. Results: Three progressive electro-clinical stages were identified. The early phase was characterized by rare, generalized tonic-clonic and focal visual seizures, followed by the occurrence of myoclonus after a period ranging from 2 to 12 months. The intermediate stage, usually occurring 2 years after the onset of epilepsy, is characterized by a worsening of epilepsy and myoclonus associated with progressive dementia and cerebellar signs. Finally, the late stage, evolving after a mean period of 7 ± 1.41 years from the onset of the disease, was characterized by gait ataxia resulting in bedriddenness, severe dementia, daily/pluri-daily myoclonus, drug-resistant epilepsy, clusters of seizures or status epilepticus, and medical complications. Amyloid (CSF Aß42, amyloid PET) and neurodegenerative (CSF p-tau181 and t-tauAg, FDG-PET) biomarkers indicate a pattern of cognitive impairment of the non-Alzheimer's disease type. A total of 80% of the LD patients showed more severe hypometabolism in the second FDG-PET scan compared to the first scan performed in a lower phase; the lateral temporal lobe and the thalamus hypometabolism were associated with the presence of intermediate or late phase. Conclusions: Three electroclinical and 18F-FDG PET evolutive stages are useful biomarkers for the progression of LD and could help to evaluate the efficacy of new disease-modifying treatments. The combination of traditional CSF biomarkers improves the diagnostic accuracy of cognitive decline in LD patients, indicating a cognitive impairment of the non-Alzheimer's disease type.

5.
Front Oncol ; 13: 1147190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081976

RESUMO

Background: Breast cancer onset is determined by a genetics-environment interaction. BRCA1/2 gene alterations are often genetically shared in familial context, but also food intake and hormonal assessment seem to influence the lifetime risk of developing this neoplasia. We previously showed the relationship between a six-months Mediterranean dietary intervention and insulin, glucose and estradiol levels in BRCA1/2 carrier subjects. The aim of the present study was to evidence the eventual influence of this dietary intervention on the relationship between circulating miRNA expression and metabolic parameters in presence of BRCA1/2 loss of function variants. Methods: Plasma samples of BRCA-women have been collected at the baseline and at the end of the dietary intervention. Moreover, subjects have been randomized in two groups: dietary intervention and placebo. miRNA profiling and subsequent ddPCR validation have been performed in all the subjects at both time points. Results: ddPCR analysis confirmed that five (miR-185-5p, miR-498, miR-3910, miR-4423 and miR-4445) of seven miRNAs, deregulated in the training cohort, were significantly up-regulated in subjects after dietary intervention compared with the baseline measurement. Interestingly, when we focused on variation of miRNA levels in the two timepoints, it could be observed that miR-4423, miR-4445 and miR-3910 expressions are positively correlated with variation in vitaminD level; whilst miR-185-5p difference in expression is related to HDL cholesterol variation. Conclusions: We highlighted the synergistic effect of a healthy lifestyle and epigenetic regulation in BC through the modulation of specific miRNAs. Different miRNAs have been reported involved in the tumor onset acting as tumor suppressors by targeting tumor-associated genes that are often downregulated.

6.
Cancers (Basel) ; 15(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046605

RESUMO

CRC is an adult-onset carcinoma representing the third most common cancer and the second leading cause of cancer-related deaths in the world. EO-CRC (<45 years of age) accounts for 5% of the CRC cases and is associated with cancer-predisposing genetic factors in half of them. Here, we describe the case of a woman affected by BWSp who developed EO-CRC at age 27. To look for a possible molecular link between BWSp and EO-CRC, we analysed her whole-genome genetic and epigenetic profiles in blood, and peri-neoplastic and neoplastic colon tissues. The results revealed a general instability of the tumor genome, including copy number and methylation changes affecting genes of the WNT signaling pathway, CRC biomarkers and imprinted loci. At the germline level, two missense mutations predicted to be likely pathogenic were found in compound heterozygosity affecting the Cystic Fibrosis (CF) gene CFTR that has been recently classified as a tumor suppressor gene, whose dysregulation represents a severe risk factor for developing CRC. We also detected constitutional loss of methylation of the KCNQ1OT1:TSS-DMR that leads to bi-allelic expression of the lncRNA KCNQ1OT1 and BWSp. Our results support the hypothesis that the inherited CFTR mutations, together with constitutional loss of methylation of the KCNQ1OT1:TSS-DMR, initiate the tumorigenesis process. Further somatic genetic and epigenetic changes enhancing the activation of the WNT/beta-catenin pathway likely contributed to increase the growth advantage of cancer cells. Although this study does not provide any conclusive cause-effect relationship between BWSp and CRC, it is tempting to speculate that the imprinting defect of BWSp might accelerate tumorigenesis in adult cancer in the presence of predisposing genetic variants.

7.
Genes (Basel) ; 14(1)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36672906

RESUMO

Pathogenic variants in genes are involved in histone acetylation and deacetylation resulting in congenital anomalies, with most patients displaying a neurodevelopmental disorder and dysmorphism. Arboleda-Tham syndrome caused by pathogenic variants in KAT6A (Lysine Acetyltransferase 6A; OMIM 601408) has been recently described as a new neurodevelopmental disorder. Herein, we describe a patient characterized by complex phenotype subsequently diagnosed using the clinical exome sequencing (CES) with Arboleda-Tham syndrome (ARTHS; OMIM 616268). The analysis revealed the presence of de novo pathogenic variant in KAT6A gene, a nucleotide c.3385C>T substitution that introduces a premature termination codon (p.Arg1129*). The need for straight multidisciplinary collaboration and accurate clinical description findings (bowel obstruction/megacolon/intestinal malrotation) was emphasized, together with the utility of CES in establishing an etiological basis in clinical and genetical heterogeneous conditions. Therefore, considering the phenotypic characteristics, the condition's rarity and the reviewed literature, we propose additional diagnostic criteria that could help in the development of future clinical diagnostic guidelines. This was possible thanks to objective examinations performed during the long follow-up period, which permitted scrupulous registration of phenotypic changes over time to further assess this rare disorder. Finally, given that different genetic syndromes are associated with distinct genomic DNA methylation patterns used for diagnostic testing and/or as biomarker of disease, a specific episignature for ARTHS has been identified.


Assuntos
Histona Acetiltransferases , Transtornos do Neurodesenvolvimento , Humanos , Códon sem Sentido , Testes Genéticos , Histona Acetiltransferases/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo
8.
Cancer Genet ; 272-273: 16-22, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36641997

RESUMO

13q14 deletion is the most recurrent chromosomal aberration reported in B-CLL, having a favorable prognostic significance when occurring as the sole cytogenetic alteration. However, its clinical outcome is also related to the deletion size and number of cells with the del(13)(q14) deletion. In 10% of cases, 13q14 deletion arises following a translocation event with multiple partner chromosomes, whose oncogenic impact has not been investigated so far due to the assumption of a possible role as a passenger mutation. Here, we describe a t(4;13)(q21;q14) translocation occurring in a B-CLL case from the diagnosis to spontaneous regression. FISH and SNP-array analyses revealed a heterozygous deletion at 4q21, leading to the loss of the Rho GTPase Activating Protein 24 (ARHGAP24) tumor suppressor gene, down-regulated in the patient RNA, in addition to the homozygous deletion at 13q14 involving DLEU2/miR15a/miR16-1 genes. Interestingly, targeted Next Generation Sequencing analysis of 54 genes related to B-CLL indicated no additional somatic mutation in the patient, underlining the relevance of this t(4;13)(q21;q14) aberration in the leukemogenic process. In all tested RNA samples, RT-qPCR experiments assessed the downregulation of the PCNA, MKI67, and TOP2A proliferation factor genes, and the BCL2 anti-apoptotic gene as well as the up-regulation of TP53 and CDKN1A tumor suppressors, indicating a low proliferation potential of the cells harboring the aberration. In addition, RNA-seq analyses identified four chimeric transcripts (ATG4B::PTMA, OAZ1::PTMA, ZFP36::PTMA, and PIM3::BRD1), two of which (ATG4B::PTMA and ZFP36::PTMA) failed to be detected at the remission, suggesting a possible transcriptional remodeling during the disease course. Overall, our results indicate a favorable prognostic impact of the described chromosomal aberration, as it arises a permissive molecular landscape to the spontaneous B-CLL regression in the patient, highlighting ARHGAP24 as a potentially relevant concurrent alteration to the 13q14 deletion in delineating B-CLL disease evolution.


Assuntos
Leucemia Linfocítica Crônica de Células B , MicroRNAs , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Deleção de Sequência , Homozigoto , Translocação Genética , Aberrações Cromossômicas , RNA , Cromossomos Humanos Par 13/genética , Cromossomos Humanos Par 13/metabolismo , Proteínas Ativadoras de GTPase/genética , MicroRNAs/genética
9.
Mol Cancer ; 21(1): 226, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550553

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive T-cell malignancy characterized by genotypically-defined and phenotypically divergent cell populations, governed by adaptive landscapes. Clonal expansions are associated to genetic and epigenetic events, and modulation of external stimuli that affect the hierarchical structure of subclones and support the dynamics of leukemic subsets. Recently, small extracellular vesicles (sEV) such as exosomes were also shown to play a role in leukemia. Here, by coupling miRNome, bulk and single cell transcriptome profiling, we found that T-ALL-secreted sEV contain NOTCH1-dependent microRNAs (EV-miRs), which control oncogenic pathways acting as autocrine stimuli and ultimately promoting the expansion/survival of highly proliferative cell subsets of human T-cell leukemias. Of interest, we found that NOTCH1-dependent EV-miRs mostly comprised members of miR-17-92a cluster and paralogues, which rescued in vitro the proliferation of T-ALL cells blocked by γ-secretase inhibitors (GSI) an regulated a network of genes characterizing patients with relapsed/refractory early T-cell progenitor (ETP) ALLs. All these findings suggest that NOTCH1 dependent EV-miRs may sustain the growth/survival of immunophenotypically defined cell populations, altering the cell heterogeneity and the dynamics of T-cell leukemias in response to conventional therapies.


Assuntos
Vesículas Extracelulares , MicroRNAs , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , MicroRNAs/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Transdução de Sinais , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
10.
J Hematol Oncol ; 15(1): 178, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36587234

RESUMO

Locally advanced non-small cell lung cancer (NSCLC) is frequent at diagnosis and requires multimodal treatment approaches. Neoadjuvant chemotherapy (NACT) followed by surgery is the treatment of choice for operable locally advanced NSCLC (Stage IIIA). However, the majority of patients are NACT-resistant and show persistent lymph nodal metastases (LNmets) and an adverse outcome. Therefore, the identification of mechanisms and biomarkers of NACT resistance is paramount for ameliorating the prognosis of patients with Stage IIIA NSCLC. Here, we investigated the miRNome and transcriptome of chemo-naïve LNmets collected from patients with Stage IIIA NSCLC (N = 64). We found that a microRNA signature accurately predicts NACT response. Mechanistically, we discovered a miR-455-5p/PD-L1 regulatory axis which drives chemotherapy resistance, hallmarks metastases with active IFN-γ response pathway (an inducer of PD-L1 expression), and impacts T cells viability and relative abundances in tumor microenvironment (TME). Our data provide new biomarkers to predict NACT response and add molecular insights relevant for improving the management of patients with locally advanced NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , MicroRNAs/genética , MicroRNAs/uso terapêutico , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores , Microambiente Tumoral
11.
Front Neurol ; 13: 969297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277909

RESUMO

Purpose: The aim of this study was to elucidate the electro-clinical features and management of the late stage of Lafora disease (LD). Methods: We investigated the electro-clinical data and medical complications of three LD patients with mutations in EPM2A and two in NHLRC1 genes during the LD late stage. Results: The late stage emerged after a mean period of 7 ± 1.41 years from the onset of the disease. All patients developed gait ataxia becoming bedbound with severe dementia. Pluri-monthly and drug-resistant myoclonic seizures, and myoclonic absence and tonic-clonic seizures were associated with daily/pluri-daily myoclonus, while the EEG/polygraphic findings showed diffusely slow activity with epileptiform abnormalities, often correlated with myoclonic jerks. Seizure emergencies with motor cluster/status epilepticus and medical complications dominated the clinical picture. In particular, video-EEG/polygraphic recordings disclosed status epilepticus with prominent motor symptoms of different subtypes refractory to IV new anti-seizure medications and responsive in 75% of cases to IV phenytoin. The main complications were dysphagia, aspiration pneumonia, acute respiratory failure, sepsis, immobility, and spasticity with bedsores. A coordinated and multidisciplinary management of the three patients with EPM2A mutations has demonstrated a reduction in seizure emergencies, medical complications and days of hospitalization, and a prolongation of the years of disease compared to the two patients with NHLRC1 mutations. Conclusion: Status epilepticus with prominent motor symptoms of different subtypes, often responsive to IV phenytoin, and multiple medical complications characterize the LD late stage. An effective management requires a multidisciplinary medical and nursing team, coordinated by an epileptologist with the aim of reducing seizure emergencies and medical complications.

12.
Clin Epigenetics ; 14(1): 71, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643636

RESUMO

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) and Pseudohypoparathyroidism type 1B (PHP1B) are imprinting disorders (ID) caused by deregulation of the imprinted gene clusters located at 11p15.5 and 20q13.32, respectively. In both of these diseases a subset of the patients is affected by multi-locus imprinting disturbances (MLID). In several families, MLID is associated with damaging variants of maternal-effect genes encoding protein components of the subcortical maternal complex (SCMC). However, frequency, penetrance and recurrence risks of these variants are still undefined. In this study, we screened two cohorts of BWS patients and one cohort of PHP1B patients for the presence of MLID, and analysed the positive cases for the presence of maternal variants in the SCMC genes by whole exome-sequencing and in silico functional studies. RESULTS: We identified 10 new cases of MLID associated with the clinical features of either BWS or PHP1B, in which segregate 13 maternal putatively damaging missense variants of the SCMC genes. The affected genes also included KHDC3L that has not been associated with MLID to date. Moreover, we highlight the possible relevance of relatively common variants in the aetiology of MLID. CONCLUSION: Our data further add to the list of the SCMC components and maternal variants that are involved in MLID, as well as of the associated clinical phenotypes. Also, we propose that in addition to rare variants, common variants may play a role in the aetiology of MLID and imprinting disorders by exerting an additive effect in combination with rarer putatively damaging variants. These findings provide useful information for the molecular diagnosis and recurrence risk evaluation of MLID-associated IDs in genetic counselling.


Assuntos
Síndrome de Beckwith-Wiedemann , Pseudo-Hipoparatireoidismo , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Metilação de DNA , Impressão Genômica , Humanos , Proteínas/genética , Pseudo-Hipoparatireoidismo/genética , Pseudo-Hipoparatireoidismo
13.
J Exp Clin Cancer Res ; 41(1): 139, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414102

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is an incurable tumor, with a median survival rate of only 14-15 months. Along with heterogeneity and unregulated growth, a central matter in dealing with GBMs is cell invasiveness. Thus, improving prognosis requires finding new agents to inhibit key multiple pathways, even simultaneously. A subset of GBM stem-like cells (GSCs) may account for tumorigenicity, representing, through their pathways, the proper cellular target in the therapeutics of glioblastomas. GSCs cells are routinely enriched and expanded due to continuous exposure to specific growth factors, which might alter some of their intrinsic characteristic and hide therapeutically relevant traits. METHODS: By removing exogenous growth factors stimulation, here we isolated and characterized a subset of GSCs with a "mitogen-independent" phenotype (I-GSCs) from patient's tumor specimens. Differential side-by-side comparative functional and molecular analyses were performed either in vitro or in vivo on these cells versus their classical growth factor (GF)-dependent counterpart (D-GSCs) as well as their tissue of origin. This was performed to pinpoint the inherent GSCs' critical regulators, with particular emphasis on those involved in spreading and tumorigenic potential. Transcriptomic fingerprints were pointed out by ANOVA with Benjamini-Hochberg False Discovery Rate (FDR) and association of copy number alterations or somatic mutations was determined by comparing each subgroup with a two-tailed Fisher's exact test. The combined effects of interacting in vitro and in vivo with two emerging GSCs' key regulators, such as Wnt5a and EphA2, were then predicted under in vivo experimental settings that are conducive to clinical applications. In vivo comparisons were carried out in mouse-human xenografts GBM model by a hierarchical linear model for repeated measurements and Dunnett's multiple comparison test with the distribution of survival compared by Kaplan-Meier method. RESULTS: Here, we assessed that a subset of GSCs from high-grade gliomas is self-sufficient in the activation of regulatory growth signaling. Furthermore, while constitutively present within the same GBM tissue, these GF-independent GSCs cells were endowed with a distinctive functional and molecular repertoire, defined by highly aggressive Wnt5aHigh/EphA2Low profile, as opposed to Wnt5aLow/EphA2High expression in sibling D-GSCs. Regardless of their GBM subtype of origin, I-GSCs, are endowed with a raised in vivo tumorigenic potential than matched D-GSCs, which were fast-growing ex-vivo but less lethal and invasive in vivo. Also, the malignant I-GSCs' transcriptomic fingerprint faithfully mirrored the original tumor, bringing into evidence key regulators of invasiveness, angiogenesis and immuno-modulators, which became candidates for glioma diagnostic/prognostic markers and therapeutic targets. Particularly, simultaneously counteracting the activity of the tissue invasive mediator Wnt5a and EphA2 tyrosine kinase receptor addictively hindered GSCs' tumorigenic and invasive ability, thus increasing survival. CONCLUSION: We show how the preservation of a mitogen-independent phenotype in GSCs plays a central role in determining the exacerbated tumorigenic and high mobility features distinctive of GBM. The exploitation of the I-GSCs' peculiar features shown here offers new ways to identify novel, GSCs-specific effectors, whose modulation can be used in order to identify novel, potential molecular therapeutic targets. Furthermore, we show how the combined use of PepA, the anti-Wnt5a drug, and of ephrinA1-Fc to can hinder GSCs' lethality in a clinically relevant xenogeneic in vivo model thus being conducive to perspective, novel combinatorial clinical application.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Mitógenos/metabolismo , Mitógenos/farmacologia , Mitógenos/uso terapêutico , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
14.
Cell Death Differ ; 29(8): 1552-1568, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35034102

RESUMO

The circadian gene Timeless (TIM) provides a molecular bridge between circadian and cell cycle/DNA replication regulatory systems and has been recently involved in human cancer development and progression. However, its functional role in colorectal cancer (CRC), the third leading cause of cancer-related deaths worldwide, has not been fully clarified yet. Here, the analysis of two independent CRC patient cohorts (total 1159 samples) reveals that loss of TIM expression is an unfavorable prognostic factor significantly correlated with advanced tumor stage, metastatic spreading, and microsatellite stability status. Genome-wide expression profiling, in vitro and in vivo experiments, revealed that TIM knockdown induces the activation of the epithelial-to-mesenchymal transition (EMT) program. Accordingly, the analysis of a large set of human samples showed that TIM expression inversely correlated with a previously established gene signature of canonical EMT markers (EMT score), and its ectopic silencing promotes migration, invasion, and acquisition of stem-like phenotype in CRC cells. Mechanistically, we found that loss of TIM expression unleashes ZEB1 expression that in turn drives the EMT program and enhances the aggressive behavior of CRC cells. Besides, the deranged TIM-ZEB1 axis sets off the accumulation of DNA damage and delays DNA damage recovery. Furthermore, we show that the aggressive and genetically unstable 'CMS4 colorectal cancer molecular subtype' is characterized by a lower expression of TIM and that patients with the combination of low-TIM/high-ZEB1 expression have a poorer outcome. In conclusion, our results as a whole suggest the engagement of an unedited TIM-ZEB1 axis in key pathological processes driving malignant phenotype acquisition in colorectal carcinogenesis. Thus, TIM-ZEB1 expression profiling could provide a robust prognostic biomarker in CRC patients, supporting targeted therapeutic strategies with better treatment selection and patients' outcomes.


Assuntos
Proteínas de Ciclo Celular , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
15.
Genet Med ; 24(2): 439-453, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906501

RESUMO

PURPOSE: This study aimed to describe a multisystemic disorder featuring cardiovascular, facial, musculoskeletal, and cutaneous anomalies caused by heterozygous loss-of-function variants in TAB2. METHODS: Affected individuals were analyzed by next-generation technologies and genomic array. The presumed loss-of-function effect of identified variants was assessed by luciferase assay in cells transiently expressing TAB2 deleterious alleles. In available patients' fibroblasts, variant pathogenicity was further explored by immunoblot and osteoblast differentiation assays. The transcriptomic profile of fibroblasts was investigated by RNA sequencing. RESULTS: A total of 11 individuals from 8 families were heterozygotes for a novel TAB2 variant. In total, 7 variants were predicted to be null alleles and 1 was a missense change. An additional subject was heterozygous for a 52 kb microdeletion involving TAB2 exons 1 to 3. Luciferase assay indicated a decreased transcriptional activation mediated by NF-κB signaling for all point variants. Immunoblot analysis showed a reduction of TAK1 phosphorylation while osteoblast differentiation was impaired. Transcriptomic analysis identified deregulation of multiple pleiotropic pathways, such as TGFß-, Ras-MAPK-, and Wnt-signaling networks. CONCLUSION: Our data defined a novel disorder associated with loss-of-function or, more rarely, hypomorphic alleles in a restricted linker region of TAB2. The pleiotropic manifestations in this disorder partly recapitulate the 6q25.1 (TAB2) microdeletion syndrome and deserve the definition of cardio-facial-cutaneous-articular syndrome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , NF-kappa B , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Éxons/genética , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais
16.
Hum Genet ; 141(2): 217-227, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34821995

RESUMO

Cooks syndrome (CS) is an ultrarare limb malformation due to in tandem microduplications involving KCNJ2 and extending to the 5' regulatory element of SOX9. To date, six CS families were resolved at the molecular level. Subsequent studies explored the evolutionary and pathological complexities of the SOX9-KCNJ2/Sox9-Kcnj2 locus, and suggested a key role for the formation of novel topologically associating domain (TAD) by inter-TAD duplications in causing CS. Here, we report a unique case of CS associated with a de novo 1;17 translocation affecting the KCNJ2 locus. On chromosome 17, the breakpoint mapped between KCNJ16 and KCNJ2, and combined with a ~ 5 kb deletion in the 5' of KCNJ2. Based on available capture Hi-C data, the breakpoint on chromosome 17 separated KCNJ2 from a putative enhancer. Gene expression analysis demonstrated downregulation of KCNJ2 in both patient's blood cells and cultured skin fibroblasts. Our findings suggest that a complex rearrangement falling in the 5' of KCNJ2 may mimic the developmental consequences of in tandem duplications affecting the SOX9-KCNJ2/Sox9-Kcnj2 locus. This finding adds weight to the notion of an intricate role of gene regulatory regions and, presumably, the related three-dimensional chromatin structure in normal and abnormal human morphology.


Assuntos
Dedos/anormalidades , Deformidades Congênitas do Pé/genética , Rearranjo Gênico , Deformidades Congênitas da Mão/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Sequências Reguladoras de Ácido Nucleico , Adolescente , Adulto , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 17/genética , Facies , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Canais de Potássio Corretores do Fluxo de Internalização/química , Deleção de Sequência , Translocação Genética , Adulto Jovem
17.
Audiol Res ; 11(3): 443-451, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34562879

RESUMO

Hearing loss (HL) affects 1-3 newborns per 1000 and, in industrialized countries, recognizes a genetic etiology in more than 80% of the congenital cases. Excluding GJB2 and GJB6, OTOA is one of the leading genes associated with autosomal recessive non-syndromic HL. Allelic heterogeneity linked to OTOA also includes genomic rearrangements facilitated by non-allelic homologous recombination with the neighboring OTOAP1 pseudogene. We present a couple of Italian siblings affected by moderate to severe sensorineural hearing loss (SNHL) due to compound heterozygosity at the OTOA locus. Multigene panel next-generation sequencing identified the c.2223G>A, p.(Trp741*) variant transmitted from the unaffected mother. Assuming the existence of a second paternal deleterious variant which evaded detection at sequencing, genomic array analysis found a ~150 Kb microdeletion of paternal origin and spanning part of OTOA. Both deleterious alleles were identified for the first time. This study demonstrates the utility of an integrated approach to solve complex cases and allow appropriate management to affected individuals and at-risk relatives.

18.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360843

RESUMO

Wolfram syndrome is a rare autosomal recessive disorder characterized by optic atrophy and diabetes mellitus. Wolfram syndrome type 1 (WFS1) is caused by bi-allelic pathogenic variations in the wolframin gene. We described the first case of WFS1 due to a maternal inherited mutation with uniparental mero-isodisomy of chromosome 4. Diabetes mellitus was diagnosed at 11 years of age, with negative anti-beta cells antibodies. Blood glucose control was optimal with low insulin requirement. No pathogenic variations in the most frequent gene causative of maturity-onset diabetes of the young subtypes were detected. At 17.8 years old, a rapid reduction in visual acuity occurred. Genetic testing revealed the novel homozygous variant c.1369A>G; p.Arg457Gly in the exon 8 of wolframin gene. It was detected in a heterozygous state only in the mother while the father showed a wild type sequence. In silico disease causing predictions performed by Polyphen2 classified it as "likely damaging", while Mutation Tester and Sift suggested it was "polymorphism" and "tolerated", respectively. High resolution SNP-array analysis was suggestive of segmental uniparental disomy on chromosome 4. In conclusion, to the best of our knowledge, we describe the first patient with partial uniparental mero-isodisomy of chromosome 4 carrying a novel mutation in the wolframin gene. The clinical phenotype observed in the patient and the analysis performed suggest that the genetic variant detected is pathogenetic.


Assuntos
Cromossomos Humanos Par 4 , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Dissomia Uniparental , Síndrome de Wolfram/genética , Feminino , Humanos , Adulto Jovem
19.
Genes (Basel) ; 12(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440290

RESUMO

The cohesin complex is a large evolutionary conserved functional unit which plays an essential role in DNA repair and replication, chromosome segregation and gene expression. It consists of four core proteins, SMC1A, SMC3, RAD21, and STAG1/2, and by proteins regulating the interaction between the complex and the chromosomes. Mutations in the genes coding for these proteins have been demonstrated to cause multisystem developmental disorders known as "cohesinopathies". The most frequent and well recognized among these distinctive clinical conditions are the Cornelia de Lange syndrome (CdLS, OMIM 122470) and Roberts syndrome (OMIM 268300). STAG1 belongs to the STAG subunit of the core cohesin complex, along with five other subunits. Pathogenic variants in STAG1 gene have recently been reported to cause an emerging syndromic form of neurodevelopmental disorder that is to date poorly characterized. Here, we describe a 5 year old female patient with neurodevelopmental delay, mild intellectual disability, dysmorphic features and congenital anomalies, in which next generation sequencing analysis allowed us to identify a novel pathogenic variation c.2769_2770del p.(Ile924Serfs*8) in STAG1 gene, which result to be de novo. The variant has never been reported before in medical literature and is absent in public databases. Thus, it is useful to expand the molecular spectrum of clinically relevant alterations of STAG1 and their phenotypic consequences.


Assuntos
Mutação da Fase de Leitura , Transtornos do Neurodesenvolvimento/genética , Proteínas Nucleares/genética , Pré-Escolar , Feminino , Humanos , Masculino , Linhagem
20.
Front Immunol ; 12: 649475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936070

RESUMO

In human primary dendritic cells (DC) rapamycin-an autophagy inducer and protein synthesis inhibitor-overcomes the autophagy block induced by Mycobacterium tuberculosis (Mtb) and promotes a Th1 response via IL-12 secretion. Here, the immunostimulatory activity of rapamycin in Mtb-infected DC was further investigated by analyzing both transcriptome and translatome gene profiles. Hundreds of differentially expressed genes (DEGs) were identified by transcriptome and translatome analyses of Mtb-infected DC, and some of these genes were found further modulated by rapamycin. The majority of transcriptome-associated DEGs overlapped with those present in the translatome, suggesting that transcriptionally stimulated mRNAs are also actively translated. In silico analysis of DEGs revealed significant changes in intracellular cascades related to cytokine production, cytokine-induced signaling and immune response to pathogens. In particular, rapamycin treatment of Mtb-infected DC caused an enrichment of IFN-ß, IFN-λ and IFN-stimulated gene transcripts in the polysome-associated RNA fraction. In addition, rapamycin led to an increase of IL-12, IL-23, IL-1ß, IL-6, and TNF-α but to a reduction of IL-10. Interestingly, upon silencing or pharmacological inhibition of GSK-3ß, the rapamycin-driven modulation of the pro- and anti-inflammatory cytokine balance was lost, indicating that, in Mtb-infected DC, GSK-3ß acts as molecular switch for the regulation of the cytokine milieu. In conclusion, our study sheds light on the molecular mechanism by which autophagy induction contributes to DC activation during Mtb infection and points to rapamycin and GSK-3ß modulators as promising compounds for host-directed therapy in the control of Mtb infection.


Assuntos
Autofagia/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Sirolimo/farmacologia , Tuberculose/tratamento farmacológico , Autofagia/genética , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/imunologia , Perfilação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...